4th Annual Nidwest Soil Improvement Symposium: 2010 Research and Practical Insights into Using Gypsum

Gypsum Effects on Soil Particles and Physical Characteristics plus Potential Impact on the Environment

L. Darrell Norton, PhD USDA-ARS National Soil Erosion Research Laboratory (Retired)

AUGUST 13, 2014

GYPSUM EFFECTS ON SOIL PARTICLES AND PHYSICAL CHARACTERISTICS PLUS POTENTIAL IMPACT ON THE ENVIRONMENT

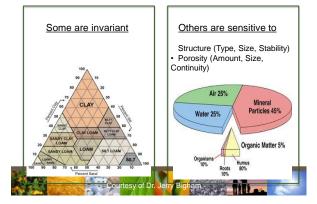
L. Darrell Norton, PhD USDA-ARS National Soil Erosion Research Laboratory (Retired)

Midwest Soil Improvement Symposium August 13, 2014 Kansas St. Univ., Manhattan, KS

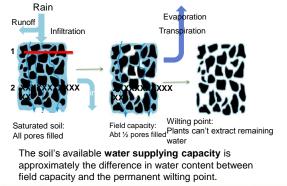
2

APOLLO 13 PHOTO-NASA

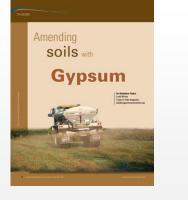
Air-water balance is the single most important factor limiting agricultural production in the U.S.


According to a study by Mittler (2006), the top two causes of economic loss to U.S. agriculture between 1980 and 2004 (major events of \$1B loss or more) were:

- 1. Combined heat and drought stress (\$130B)
- 2. Flooding and water-logging (\$50B)



QUALITY SOIL WITH HIGH PRODUCTIVITY



Soil Physical Properties

American Society of Agronomy Discovers Gypsum 2011

2

TOP TEN REASONS TO USE GYPSUM from Wallace and Wallace, CSSPA. 1994

- Improve Soil Physical Properties in Relation to Water
- Improve Soil Chemical Properties
- Improve Soil Microbiological and Biogeochemical Environment
- Increase Plant Root Volume and Surface Area
- Provide a Soluble source of Ca for Plants
- Provide a Soluble source of S for Plants
- ▶ Prevent loss of Important Nutrients
- Make other Nutrients more Available
- Stabilize Organic Carbon in Soil
- Reduce Greenhouse Gas Emissions

SOURCES OF GYPSUM

CLEAN AIR ACT 1963

- ▶ 1970 EPA Created with enforcement mandate
- 1977 amended to require new coal-fired plants constructed install scrubbers to meet air quality standards (Older Gypsum mixed with Fly Ash)
- 1990 amended to require even older plants reduce air pollution (Modern FGD Gyspum of Wallboard Quality)
- 2000 EPA rule proposed to make CCP's toxic wastes defeated
- 2010 EPA rule proposed to make CCP's toxic wastes unknown

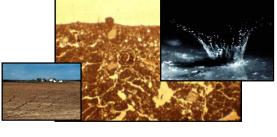
COAL FIRED POWER PLANTS WITH WET SCRUBBING

SOLUBLE Ca ELECTROLYTE SOURCES

► Calcite (CaCO ₃) 0.1	4 g/L
------------------------------------	-------

- Phosphogypsum (Gypsum + Phosphate)
- **•** Gypsum (CaSO₄·2H₂O) 2.41
- ► Anhydrite (CaSO₄) 2.09 745
- ► Calcium Chloride

RAINWATER IS NATURAL DISTILLED AND LOW IN ELECTROLYTES


a let

Demonstration of Electrolyte (Salt) Effect on Dispersion and Strength

RAINDROP IMPACT AND DISPERSION LEADS TO SURFACE SEALING

GYPSUM+PAM

e et

IMPROVES SOIL STRUCTURE

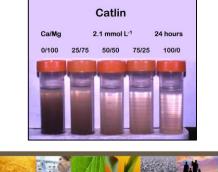
A. ar

AGGREGATE STABILIZATION

EFFECT OF GYPSUM AND PAM ON SOIL EROSION BY CONCENTRATED FLOW ON STEEP ROAD CONSTRUCTION SLOPES 2/1

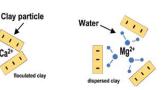
P

1


PG

C

IMPROVED INFILTRATION/DRAINAGE BY AMENDING SOIL IN CONVOY OHIO


Ca EFFECT ON DISPERSION/ **FLOCCULATION**

CLAY DISPERSION

- Soil is composed of Skeletal Grains of Sand and Silt plus plasmic materials (colloids) of Clay and Organic Matter
- Sand and silt give mass and bulk to the soil whereas Clay and Organic Matter give in chemical reactivity, water holding capacity and structure. ⊳
- Once these colloids disperse the soil structure is destroyed and water and oxygen have difficulty penetrating the soil if there is any appreciable amount of colloids (>3%).

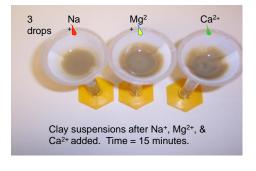
Soil dispersion is mainly caused by highly hydrated ions, such as Na* or Mg2*, attracted to the surface of clay particles

1

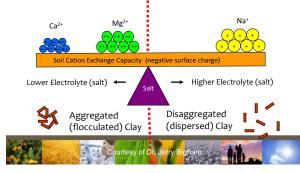
floce

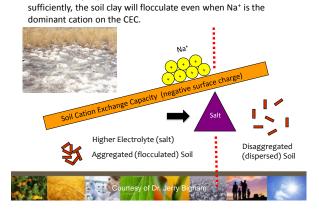
- Ca²⁺ ..

Flocculation/Dispersion Demonstration

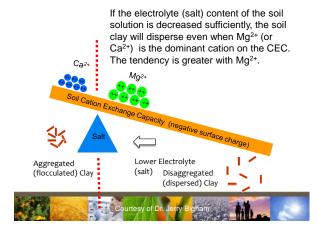


R



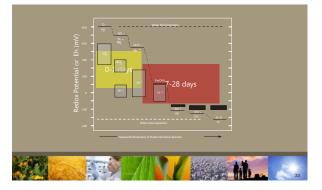


Filtrates after Na⁺, Mg²⁺, and Ca²⁺ added. Time = 15 minutes.



Clay dispersion depends on the balance between exch. Ca²⁺, Mg²⁺ and Na⁺ as well as the amount of total electrolyte (salt) in the soil solution. Exchangeable Ca²⁺ is a good aggregating (flocculating) agent; Na⁺ is not; Mg²⁺ is intermediate.

If the electrolyte (salt) content of the soil solution is increased


Sequence for microbially mediated reduction in the soil environment

Element	Oxidized	Reduced	Eh
Oxygen	O ₂	H ₂ O	320 to 380
Nitrogen	NO3 ⁻	NO2 ⁻ , NO, N2O, N2, NH3	220 to 280
Manganese	MnO ₂	Mn ²⁺	180 to 220
Iron	Fe ₂ O ₃	Fe ²⁺	80 to 110
Sulfur	SO42-	H_2S	-170 to -140
Carbon	CO2	CH_4	-280 to -200

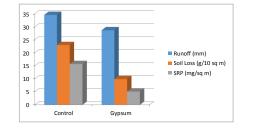
Data from Patrick and Jugsulinda. 1992. Soil Sci. Soc. Am. J. 56:1071-73.

REDUCTION SENSITIVE COMPOUNDS

IMPROVED N USE EFFICIENCY

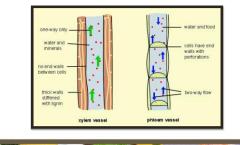
Type of GHGGWPCarbon dioxide1 (CO_2) 21Methane (CH_4) 21Nitrous oxide310 (N_2O) 1.300	GLOBAL WARMING POTENTIAL GHGS FROM USEPA		
(CO_2) Methane (CH ₄) 21 Nitrous oxide 310 (N ₂ O)	Type of GHG	GWP	
Nitrous oxide 310 (N ₂ O)		1	
(N ₂ O)	Methane (CH_4)	21	
(HFC)-134a 1.300		310	
	(HFC)-134a	1,300	

POLLUTION ATTRIBUTED TO STRATIFICATION OF PHOSPHOROUS FROM REDUCED TILLAGE IN LAKE ERIE


Not Treated

WATER STRESS REDUCED WITH GYPSUM

MICRONUTRIENTS UPTAKE W/O & W GYPSUM



EFFECT ON EROSION IN NO-TILL

REDUCED SEDIMENT AND P IN TILE FLOW FROM NORTHWEST OHIO WITH GYPSUM

PHLOEM VS XYLEM

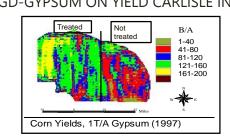
ROOT MASS ENHANCED BY SOLUBLE CA

SULFUR AS A FERTILIZER

- Amino acids methionine and cysteine
 - Precursors of other sulfur-containing compounds
- Sulfolipids (fatty compounds) in membranes, especially chloroplast membranes
- Nitrogen-fixing enzyme (nitrogenase)
 - ▶ 28 S atoms in two active sites

CALCIUM AS A FERTILIZER

▶ Required for proper functioning of cell membranes and cell walls

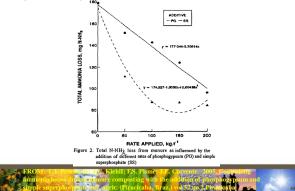

- ► Needed in large amounts at tips of growing roots and shoots and in developing fruits

▶ Relatively little Ca is transported in phloem Ca needed by shoot tips is transported in the transpiration stream of xylem Ca needed by root tips comes from soil

solution

RESULTS ON EAR SIZE 2008

YIELD MAP SHOWING EFFECT OF FGD-GYPSUM ON YIELD CARLISLE IN



ROOT BIOMASS INCREASED

RANDOM CORN EARS AMENDED WITH GYPSUM ON LEFT AND CONTROL, COLORADO

REDUCTION OF AMMONIA VOLATILISATION FROM SWINE MANURE

CONCLUSIONS

- Gypsum is a useful tool for soil, air and water environmental problems
- Gypsum improves infiltration and reduces erosion
- ▶ Gypsum improves soil drainage
- ▶ Gypsum can reduces loss of nitrogen gases from soil
- Gypsum can reduce soluble phosphate in surface runoff and tile flow
- Gypsum is a source of Ca and S for plants which can improve yield while conditioning the soil

