Impact of FGD Gypsum on Soil Fertility and Soluble P concentrations

Dexter B. Watts

USDA-ARS
National Soil Dynamics Laboratory
Auburn, AL

Benefits of Gypsum

- Improve soil properties
 - Nutrient soil for crops (Ca and S)
 - Improve water infiltration
 - Control soil erosion and crusting
 - Alleviate the effects of subsoil acidity (Al Toxicity)
- Reduce contaminates in water runoff.

Gypsum

FGD Gypsum

Mined Gypsum

Sulfur Deposition Trends

US EPA-Clean Air Status and Trends Network

Results

Comments: Calcium and sulfur distributions with soil depth indicate that three consecutive years of surface applied FGD gypsum amendments on no-till cotton have resulted in significant increases in these essential plant nutrients at depth.

Note: 0, 2.24, 4.48, and 6.72 Mg ha-1 correspond to 0, 1, 2, and 3 tons/acre.

Soil Physical Characterization

Soil penetration resistance, 2012 Milan, TN

- Cone penetrometer
 measured integrated total
 force required to reach a
 12-inch depth
- Crop row and middle of row (wheel track and nonwheel track)
- In all row positions, resistance tended to decrease in plots treated with FGD gypsum

Tillage	FGD gypsum rate	Non-wheel track middle	Crop Row	Wheel track middle
	tons/acre			
Conventional	0	79.4	76.0	94.8
	1	71.2	73.3	91.3
	2	68.7	75.0	84.2
	3	72.2	71.3	89.0
	5	73.4	69.9	86.4
No-till	0	80.8	72.5	90.6
	1	68.4	68.9	83.0
	2	84.0	75.5	92.3
	3	71.4	71.4	84.3
	5	79.1	70.1	88.1

Soil water content during the 2009 growing season Verona, MS

- Water content was measured with TDR only in 2009
- CT plots showed little difference until end of the growing season, when 3 tons/acre FGD held more water
- NT showed a more consistent advantage for the 3 tons/acre FGD treatment, with the difference starting earlier in the growing season
- Slightly higher soybean yields in NT may have resulted from the increased moisture

Sand Mountain Bermudagrass Study

Sand Mountain

Treatment	Rate	pН	CEC	EC	N	С
			meq 100g-1	dSm ⁻¹	%	%
Control	0	6.46	2.82	0.13	0.08	0.88
Gypsum	2	6.73	3.08	0.12	0.09	0.92
Gypsum	10	6.95	3.80	0.11	0.10	1.07
Gypsum	20	7.19	4.01	0.14	0.09	1.03
FGD	2	6.46	2.76	0.12	0.08	0.89
FGD	10	6.73	3.01	0.12	0.08	0.90
FGD	20	6.52	4.83	0.12	0.09	1.02
FGD + Fly Ash	2	6.61	3.21	0.12	0.10	1.07
FGD + Fly Ash	10	7.27	3.51	0.12	0.08	0.90
FGD + Fly Ash	20	7.44	4.34	0.12	0.10	1.05

Mehlich 3 Extractable Nutrients 2010															
Treatment	Rate	P	K	Ca	Mg	S		Al	В	Cu	Fe	Mn	Mo	Na	Zn
							Ы	μg ⁻¹							
Control	0	248.7	929.4	711.5	638.6	125.8	П	12547.0	3.35	6.00	5662.9	171.2	0.49	56.2	23.7
Gypsum	2	258.7	743.4	657.3	567.7	121.2	П	10826.4	3.46	5.47	4961.8	159.4	0.48	34.0	20.8
Gypsum	10	294.9	809.8	997.3	713.9	160.8	П	12222.5	3.44	6.91	5653.8	161.8	0.49	40.4	24.4
Gypsum	20	246.7	843.7	1477.1	834.7	162.8	П	12258.9	3.47	5.43	5576.9	165.0	0.51	42.8	22.6
FGD	2	230.9	800.1	631.8	568.3	117.5	П	11776.3	3.57	5.11	5946.8	163.3	0.44	37.8	21.3
FGD	10	246.0	754.0	835.2	533.3	127.3	П	10984.7	3.26	5.16	5009.7	158.3	0.47	40.8	21.8
FGD	20	244.5	774.7	1361.4	567.7	148.6	П	11591.1	3.13	5.09	5222.8	181.6	0.44	36.6	21.7
FGD + Fly Ash	2	255.3	769.2	740.3	588.3	136.1	П	11547.3	3.48	5.42	5299.5	158.8	0.51	38.2	23.0
FGD + Fly Ash	10	256.2	723.7	904.3	551.2	127.4		10835.8	3.16	4.57	5000.5	149.6	0.43	37.4	20.0
FGD + Fly Ash	20	283.8	763.8	1395.0	579.2	168.5		10977.6	3.61	6.30	5146.0	142.6	0.47	37.6	23.0
	<u> </u>	•									•				

2008 Bermud	2008 Bermudagrass Nutrient Concentrations															
		%N	%C	Р	K	Ca	Mg	S	Al	В	Cu	Fe	Mn	Мо	Na	Zn
								'	ug/g	'						'
control	0	2.30	43.9	2446.3	17354.3	4380.6	1804.5	2806.3	67.16	4.95	5.55	139.43	123.81	0.40	267.56	16.68
Gypsum	2	2.31	43.9	2420.7	17988.8	4563.5	1813.0	3237.7	70.27	4.26	5.79	128.16	127.20	0.41	239.31	17.89
Gypsum	10	2.23	43.6	2421.2	18120.3	4640.8	1870.2	3328.4	69.90	4.32	4.72	198.80	136.48	0.39	206.89	16.58
Gypsum	20	2.32	43.5	2370.8	19547.7	4866.8	2049.2	3368.3	57.23	4.30	4.97	126.60	126.11	0.43	206.97	18.38
Fgd	2	2.13	43.8	2205.8	17782.1	3962.4	1845.8	3059.7	58.68	4.68	4.71	130.45	216.21	0.49	191.88	15.73
Fgd	10	2.19	43.7	2170.6	18016.6	4440.1	1769.4	3300.3	76.01	4.46	9.83	153.38	199.12	0.51	207.07	19.25
Fgd	20	2.28	43.7	2107.5	17502.2	4786.0	1804.6	3429.4	70.31	6.03	5.89	169.98	213.57	0.35	193.64	18.22
Fly	2	2.17	43.8	2332.1	18355.3	4392.5	1916.2	3026.5	76.73	4.42	7.36	147.55	126.04	0.49	206.12	18.96
Fly	10	2.22	43.8	2097.4	17069.1	4378.8	1751.1	3149.7	58.10	5.71	4.45	150.38	191.21	0.41	201.19	15.68
Fly	20	2.20	43.6	2205.4	18882.0	4404.2	1956.3	3282.6	55.49	5.60	4.38	138.34	173.20	0.44	193.92	16.28

		%N	%C	Р	K	Ca	Mg	S	Al	В	Cu	Fe	Mn	Мо	Na	Zn
								'	ug/g							'
																1—
control	0	2.04	43.58	2891.5	16995.6	3801.2	1656.3	2764.8	112.2	3.24	12.15	133.32	60.83	1.32	169.38	26.90
Gypsum	2	1.98	43.21	3082.5	17541.5	3881.7	1673.4	2698.4	142.5	3.20	13.75	156.47	70.44	1.67	145.11	30.18
Gypsum	10	1.96	43.57	2916.4	16055.7	4121.7	1360.6	2879.7	139.1	3.38	15.04	162.95	75.84	1.71	154.20	28.62
Gypsum	20	1.95	43.34	3035.2	16385.3	4277.7	1360.6	2931.6	149.4	3.13	16.20	155.58	72.97	1.46	137.38	30.02
Fgd	2	2.00	42.66	2949.4	17270.1	4495.3	1541.1	2838.3	130.5	3.62	14.40	140.32	71.18	1.72	154.86	33.04
Fgd	10	1.92	43.16	3016.0	17336.1	4567.8	1465.9	2901.8	141.8	3.32	14.84	156.00	63.81	1.43	129.46	28.26
Fgd	20	1.97	43.34	3000.8	17103.5	4763.6	1720.3	3033.3	198.5	3.50	15.23	197.58	74.87	1.49	164.59	30.15
Fly	2	1.91	43.46	2837.0	16420.6	3720.8	1569.0	2759.5	152.8	3.27	13.53	165.93	90.90	1.31	154.61	27.10
Fly	10	1.93	43.28	3119.7	17169.3	4267.8	1334.3	2886.2	154.8	3.39	16.22	166.39	94.16	1.24	137.83	33.41
Flv	20	1.91	43.18	2944.3	16894.9	4191.7	1238.5	3002.6	168.9	3.10	16.44	182.64	93.36	0.97	119.61	30.57

	dagrass N				1/	0-	N 4		Α.Ι		0				N1-	7.
		%N	%C	Р	K	Ca	Mg	S	Al	В	Cu	Fe	Mn	Мо	Na	Zn
								'	ug/g							'
control	0	1.98	43.49	3084.5	18094.0	3906.6	1780.4	2267.2	37.86	3.46	7.25	195.99	93.33	1.13	154.13	30.32
Gypsum	2	1.90	44.10	3241.0	16999.0	3984.9	1756.4	2203.3	36.94	3.70	6.43	121.70	64.99	1.26	139.70	28.88
Gypsum	10	1.96	43.87	3174.2	17136.8	4391.6	1740.4	2424.9	49.53	3.36	7.16	238.55	62.87	1.54	139.03	31.35
Gypsum	20	1.86	43.80	3250.8	18142.5	4600.2	1611.1	2457.6	32.30	2.84	6.24	109.76	66.56	1.28	128.68	27.81
Fgd	2	1.84	43.98	3110.8	17205.9	3883.4	1646.0	2294.7	40.53	3.32	6.91	107.77	96.22	1.05	132.68	30.15
Fgd	10	1.95	44.10	3082.8	15882.2	4296.3	1428.8	2373.1	38.23	3.34	6.32	101.43	75.52	1.14	144.42	27.84
Fgd	20	1.83	44.01	3196.8	16640.2	4304.3	1399.9	2453.3	39.60	3.64	6.19	146.57	96.88	1.06	115.35	28.53
Fly	2	1.95	44.03	3213.3	16561.5	4135.8	1726.4	2380.0	44.46	3.74	7.69	109.37	69.59	1.66	148.23	32.15
Fly	10	1.87	44.27	3054.5	15185.8	4291.6	1435.6	2402.4	32.15	3.36	6.79	105.97	71.53	1.43	135.43	27.01
Fly	20	1.82	44.24	3011.1	14200.6	4334.9	1426.7	2415.9	30.30	3.38	7.24	92.14	68.87	1.46	129.79	27.60

Water Quality Concerns in Southeast

Water Quality

- What is quality of water in the U.S.
 - * 45% of river miles are impaired
 - * 47% of lake acres,
 - * 32% of estuarine water is impaired.
- Agriculture is considered to be one of the major contributors to water quality
- Phosphorus loss from agriculture
- Poultry Industry
 - Improper disposal of waste from poultry industry

Gypsum Interaction with Soluble P

 Formation of an insoluble Ca-phosphate complex

 Insoluble hydroxyapatite and fluorapatite

Orthophosphate
$$PO_4^{3-}$$
 $Ca_5(PO_4)_3(OH)$ $Ca_5(PO_4)_3F$

Figure 1. Water soluble P concentrations observed on August 14th 2008, in soil at two depths (0-2and 2-6 inches) amended with gypsum, FGD gypsum, and FGD gypsum + fly ash applied at 1, 5, an 10 tons acre⁻¹ and compared to a poultry litter only control.

Figure 2. Water soluble P concentrations observed on November 10th 2008, in soil at two depths (0-2and 2-6 inches) amended with gypsum, FGD gypsum, and FGD gypsum + fly ash applied at 1, 5, an 10 tons acre-1 and compared to a poultry litter only control.

Figure 4. Water soluble P concentrations observed on July 21th 2009, in soil at two depths (0-2and 2-6 inches) amended with gypsum, FGD gypsum, and FGD gypsum + fly ash applied at 1, 5, an 10 tons acre⁻¹ and compared to a poultry litter only control.

Figure 5. Water soluble P concentrations observed on October 15th 2009, in soil at two depths (0-2and 2-6 inches) amended with gypsum, FGD gypsum, and FGD gypsum + fly ash applied at 1, 5, an 10 tons acre⁻¹ and compared to a poultry litter only control.

Figure 3. Water soluble P concentrations observed on April 30th 2009, in soil at two depths (0-2and 2-6 inches) amended with gypsum, FGD gypsum, and FGD gypsum + fly ash applied at 1, 5, an 10 tons acre-1 and compared to a poultry litter only control.

Poultry Litter (tons/acre)

cre)		0	2	4	6
ıs/acı	0				
(tons/	1				
sum	2	2-0	2-2	2-4	2-6
yps	4	4-0	4-2	4-4	4-6

E.V. Smith Research

Soluble P Concentration in Soil After 3 yearly Applications

Research in Tampa Florida

Spreading FGD Gypsum

McMullen Tennis Center (Non-irrigated Plots)

Measuring Impact of Soil Amendments on P Runoff

Treatments

Poultry litter was at a rate of 250 kg N ha⁻¹

Buffer strips received rates of 0,1,3.2,5.6 Mg ha⁻¹ commercial farm grade gypsum

Runoff rate was equivalent to a 124 mm h-1

Collection of runoff at 0,10,20,30 min time intervals

Runoff Collection

Rainfall Simulation Study

Rainfall Simulation

Runoff as % of Rainfall

FGD Gypsum (Mg ha⁻¹)

Initial Runoff

Worst Case

Six Weeks Runoff

After 5 inches

Six Weeks Runoff After 5 inches

End of Season Runoff

End of Season Runoff

Figure 1

The effect of a surface application of gypsum on runoff amount, soil loss, and soluble reactive phosphorous (SRP) for a four-year rainfall simulation study under both tilled and no-tilled conditions for a Zulch soil near Kurten, Texas (Norton and Mamedov 2006). Gypsum treatment was significantly lower at the p = 0.05 level with the t-test.

Figure 2

Comparison of gypsum and manure application to no-till agriculture for a rainfall simulator study on a Blount loam soil near Waterloo, Indiana, for amounts of soluble reactive phosphorus (SRP), total phosphorus, nitrate, and total nitrogen in runoff. All are significantly different and the p=0.05 level with Tukey's standardized range test, except nitrate, which was not significantly different in any of the treatments.

Conclusions

 Gypsum additions significantly reduced soluble P concentrations in the soil.

 Gypsum addition increased CEC and extractable Ca, S and decreased Fe, AL, and Na in soil

 Gypsum addition increased uptake of Ca and S in plant tissue.

Gypsum can potentially decrease soil compaction and increase water infiltration

Questions

